Prediction in polynomial errors-in-variables models
نویسندگان
چکیده
منابع مشابه
Bootstrapping Errors-in-Variables Models
The bootstrap is a numerical technique, with solid theoretical foundations, to obtain statistical measures about the quality of an estimate by using only the available data. Performance assessment through bootstrap provides the same or better accuracy than the traditional error propagation approach, most often without requiring complex analytical derivations. In many computer vision tasks a reg...
متن کاملTesting the Suitability of Polynomial Models in Errors - in - Variables Problems
A low-degree polynomial model for a response curve is used commonly in practice. It generally incorporates a linear or quadratic function of the covariate. In this paper we suggest methods for testing the goodness of fit of a general polynomial model when there are errors in the covariates. There, the true covariates are not directly observed, and conventional bootstrap methods for testing are ...
متن کاملTesting the Suitability of Polynomial Models in Errors-in-variables Problems by Peter Hall
A low-degree polynomial model for a response curve is used commonly in practice. It generally incorporates a linear or quadratic function of the covariate. In this paper we suggest methods for testing the goodness of fit of a general polynomial model when there are errors in the covariates. There, the true covariates are not directly observed, and conventional bootstrap methods for testing are ...
متن کاملEfficient Estimation of Errors-in-Variables Models
The paper addresses the discrete-time linear process identification problem assuming noisy input and output records available for the parameter estimation. The efficient algorithms are derived for the simultaneous estimation of the process and noise parameters. Implementation techniques based on matrix and polynomial decompositions are given in details resulting in estimation algorithms with re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Modern Stochastics: Theory and Applications
سال: 2020
ISSN: 2351-6046,2351-6054
DOI: 10.15559/20-vmsta154